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SUMMARY

A theoretical investigation is made of the use of a high~-gain
saturating control system for an adaptive autopilot. The results of the
study show that such a system can control an aircraft over the entire
flight envelope without requiring air data measurements. The capabili-
ties and limitations of this type of control system are explored, and it
is found that difficulties may be encountered at either high or low
extremes of dynamic pressure. At high dynamic pressure, the limit cyecle
or "chatter" which is inherent in the system may produce objectionable
or intolerable effects. Analytical methods are presented for predicting
the frequency and amplitude of this chatter and its effect on the low-
frequency performance. Methods are also given for reducing chatter
amplitude and its undesirable effects on the low-frequency response. At
low dynamic pressures, the performance is restricted by limiting and low
aerodynamic gain. Attempts to make the system response time short for
small inputs will result in a poorly damped response and, in some cases,
instability for large inputs. It is shown that one way of compensating
for this difficulty is to accept a sluggish response for low dynamic
pressures; the closed-loop transfer function changes automatically with
flight condition to take advantage of the higher aircraft capabilities
at high dynamic pressures. It is also shown that the system can be
designed to control unstable aircraft.

INTRODUCTION

Considerable interest has been focused recently on adaptive auto-
pilots! as a means of avoiding the complexity and reliability difficulties
of gain changers in the autopilot which heretofore have been used to cope
with large variations in the aerodynamic characteristics of the aircraft.

1There is considerable controversy in the control systems field as
to what constitutes an adaptive control system. A definition which has
come into common usage in the case of autopilots is that an adaptive auto-
pilot is one which will maintain its closed-loop transfer function invari-
ant over the flight envelope without the use of air data measurements.
In this report the closed-loop response is not required to be invariant
but it may change in an acceptable manner.



A large number of papers dealing with this subject can be found in the
proceedings of a recent WADC symposium_(ref. 1). One of these papers
(ref. 1, p. 33) was presented by the authors. This report contains the
material of that paper plus additional material which has since been
derived.

The problem of designing an adaptive autopilot is essentially one
of making the transfer function, relating the output and input of a
feedback control system, independent of the aircraft transfer function.
It is well known that this end can be accohplished by making the open
loop gain very high. A very high gain system, however, generally has
stability problems which heretofore have prevented its application to
autopilots.

It is the purpose of this investigation to study the problems of a
high gain system to determine the fundamental difficulties and practical
solutions to these difficulties. '

The scope of the investigation will be restricted to considering
transfer functions in the longitudinal mode only and it will be assumed
the aircraft equations of motion are linear. Many of the derived funda-
mental characteristics of such systems, however, can be extended to cover
the other modes of the aircraft and nonlinear equations of motion.

It is convenient to use the model concept in describing an adaptive
autopilot. This description is aided by the block diagram of sketch (a).

Servo

and
Network aircraft

+ i
it - N(s) Gls) il
+

KH(s)| Network {

Model

M(s)

Sketch (a)

Here, M(s) represents the transfer function of the ideal or model,
that is, the desired transfer function relating the output to the input.
The input signal is r(t), and c(t) represents the controlled output
(e.g., pitch rate, normal acceleration, etc.). The same input is applied
to both the model and the aircraft system, and if a difference or error
signal exists between the desired response, rg(t), and the output, c(t),
then a corrective signal is applied through the network, KH(s), to make
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the difference reduce to zero. This simple concept, although quite
useful for explanatory purposes, is not complete. A requirement which
must be met is that loop (1) of sketch (a) must be a stable loop. For
purposes of understanding it is generally convenient to transform the
block diagram of sketch (a) to the one of sketch (b).

Servo
and
Network aircraft
r, (1) c(t)
M Lememe 3 K NG 6ls)

Instruments |

H(9

Sketch (b)

This diagram is more useful for aircraft purposes since it allows
H(s) to represent the measuring instruments which, as a result of the
methods of measurement, must have certain dynamic properties. One can
derive from sketch (b) the fact that one way to make the closed-loop
transfer function, C/R, equal to the model transfer function, M(s), is
to make the gain, K, infinite. Sketch (b) also shows that the transfer
function

c KN(s)G(s) 1
Ra  1+kN(s)H(s)a(s) H(s)

for K =«

Thus, a second alternative for the system is to make Rg/R = 1 and the
model transfer function equal to 1/H(s). Again the system response will
behave like the model. This last alternative is the one that will be
concentrated on in this report. Other schemes can be found in

reference 1.

As was mentioned with reference to sketch (a), loop (1) of sketch (a)
or sketch (b) must be a stable loop. As will be shown, practical con-
siderations always make it impossible for K +to be infinite and the
system to be stable. It will be shown, however, that if one installs a
limiter or saturating amplifier in an appropriate place in the loop, the
transfer function of C/Rg of sketch (b) can be made to approximate
1/H(s), the reciprocal of the feedback transfer function, and still be
stable. The theory and method for analysis and design of such systems
are derived in this report in the section entitled, "Analysis of a High-
Gain Salurating System." An application of the theory and methods to a
high-speed air-to-air missile is given in the section entitled, "A
Missile FExample."




a,b

NOTATION

arbitrarily chosen constants
normal acceleration, g

desired normal acceleration, g
limit level, deg/sec

wing mean aerodynamic chord

controlled quantity

chatter amplitude of the controlled quantity

1ift coefficient
é.C_I_'
oa
o,
0%
pitching-moment coefficient
OCny
N
3Cn
d(ac/2v)
%
0%
3Cm
d(6T/2v)

Laplace transform of controlled quantity
normalized dither amplitude

pitching moment of inertia, slug—ft2
gain

mass, slugs

manipulated variable
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r(t)

R(s)

magnitude of negative real pole
dynamic pressure, 1b/sq ft
reference quantity

Laplace transform of reference quantity
Laplace transform variable
wing area, sq ft

time, sec

velocity, ft/sec

saturated variable

normalized constant input

angle of attack, deg

unbalance in limit level

flight path angle, deg

control deflection, deg
damping ratio

pitch angle, deg

time constant, sec

phase angle

angular frequency, radians/sec
Subscripts

aerodynamic
crossover or chatter
desired response
filter

instruments



n networks

5 servo

0 zeros in s plane
1,2 arbitrary parameters

ANATYSTIS OF A HIGH-GAIN SATURATING SYSTEM

Basic Theory

The basic theory will first be used to demonstrate that a high-gain
saturating control system corresponds to an adaptive autopilot.®

Servo
Electronic and
Network Limiter integrator aircraft
m (1) B t )
N(s) K / X —:; G(s)
-B
Iinstruments
H(s)
Sketch (c)

Sketch (c) is a block diagram typical of autopilots. The input
commend signal is r(t), and c(t) is output controlled motion (e.g.,
pitch rate, normal acceleration, etc.). The limiter has unity gain
and is preceded by a gain K. Note that if K is infinite, the combi-
nation of the limiter and gain blocks is eguivalent to an ideal relay
since, then, x(t) = B sgn m(t). The term G(s) represents the transfer
function of the servo-aircraft combination. For purposes of explanation,
the servo transfer function will be assumed to be unity. An electronic
integrator is located after the limiter. Since the servo transfer func-
tion is unity, x(t), which is bounded by the limiter, is the control-
surface velocity.3 Thus, we are dealing with an autopilot which is non-
linear as a result of limiting the control-surface rate.

ZA high-gain saturating system has been used to obtain an adaptive
autopilot by Minneapolis Honeywell (ref. 1, p. 123). The material pre-
sented here is felt to extend this previous work by presenting analytical
methods for designing such systems.

3An equivalent system would result if the limiter were the hydraulic
valve (with position limits) and the integrator were the approximate
relation between valve position and control-surface deflection.
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The system of sketch (c) is a saturated control system of a type
studied previously (e.g., ref. 2). It has generally been shown that the
characteristic response of this system will vary markedly with both the
magnitude and frequency of the input. It has also been shown that a good
visualization of the changes in the response characteristics with input
magnitude and frequency can be obtained by drawing a root-locus diagram
as a function of equivalent limiter gain.4 The closed-loop poles are
considered to be at positions on the loci which are determined by the
equivalent gain of the limiter. Thus, for very large inputs the closed-
loop poles are nearly at the open-loop position (i.e., the equivalent
limiter gain is low). For very small inputs, the closed-loop pole loca-
tions can be determined by a method to be shown later.

To illustrate the use of the root-locus technique consider the
following transfer functions of the blocks of sketch (c).

G(S) = Ka 7
(s2/wa?) + (26, /wa)s + 1

(s) - (502/wo?) + (2t /wo)e+1 ) (1)
(s2/wi®) + (283 /wi)s+1

N(s) = 1 ]

For this example, G(s) is an approximate relationship between normal
acceleration and control-surface deflection for a tail-controlled air-
craft. The H(s) transfer function represents an approximate relation-
ship for the sum of the outputs of a normal accelerometer, a pitch-rate
gyro, and a pitching accelerometer as will be shown later. Thus,

sketch (c) is the block diagram of a normal-acceleration autopilot. The
characteristic equation for this system (without saturation) is readily
derived from sketch (c¢). It is

K

1+ G(s)H(s)N(s) = 0 (2)

“The limiter is treated as a device whose gain decreases as its
input magnitude increases (see, e.g., ref. 2).




The loci as a function of the gain® X are shown in sketch (d) for one
set of values of wg, g, wos {o, wj, and ¢;. Sketch (d) illustrates
that loeci of the instrument poles (the complex conjugate 1s not shown)
move into the right half plane for some finite value of K. Thus, if

K is made infinite, the unsaturated system will be unstable. The system

ch
jw
|nSfrl‘KO/(wo,cu)
(‘”o,QO)
Aircraft Electronic
integrator
—
—a
Sketch (d)

is not unstable, however, since any divergence in the response would
cause the input to the limiter to grow and consequently reduce its
equivalent gain. As a result, the system with no inputs has a limit
cycle (or chatter) of frequency we. With reference to sketch (c), it
can be seen that if w, 1s very high, the bounded output of the limiter,
x(t), will be well filtered by the integrator, servo, and aerodynamics
which follow it. Thus, the output is approximately zero when the input
is zero.

This system is identical in many respects to off-on control systems
investigated by Dr. Flugge-Lotz and her associates (refs. 3 and 4). The
relay chatter in their experiments was attributed to relay imperfections,
such as dead time. However, one can approximate these imperfections by
a linear, second-order transfer function and then attribute the chatter
(at wy) to the fact that the denominator of (K/s)N(s)G(s)H(s) is at
least three orders greater than the numerator.® This fact can be under-
stood by considering the asymptotic behavior of the root locus plots for
such a system (e.g., see ref. 5).

>The actual K used in this study will be infinite; however, the
root locus as a function of equivalent limiter gain will be the same as
the one which is a function of the K in sketch (c).

8This condition (or approximation) is true for all practical systems
when all high-order dynamics are considered (amplifier response, etc.).
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For large step inputs or initial conditions, the response of this
system may be obtained by phase space methods (ref. 4) or by the switch
time method (for step inputs) of reference 2. For gqualitative purposes,
the closed-loop poles may be considered as moving back from the small-
signal operating point (which is still to be determined) toward the open-
loop pole positions as the input magnitude is increased. Thus, if the
loci of the poles closest to the origin (the dominant poles) always stay
in well-damped regions of the s plane as the equivalent gain is reduced,
the system response will be reasonably well damped regardless of the
input.

The small-signal operating point on the loci, that 1s, the poles and
zeros of an equivalent linear system (valid for small or slowly changing
input commands) can be found by determining the equivalent gain of the
limiter. ©Note that gain at any point on the loci is the product of
equivalent limiter gain and aerodynamic gain, Kg.

The equivalent gain of the limiter is found by treating its input
as a constant or a low-frequency sinusoid, plus a constant-amplitude,
high-frequency sine wave or "dither." If the limiter is treated in this
manner, it can be shown (ref. 6) that for small inputs which are constants
or sinusoids of lower frequency than the dither, the equivalent gain of
the limiter is just half what it is for the dither input. A simple deri-
vation of this fact, which is valid for small constant inputs is given in
the appendix. Since the equivalent gain does not depend on the source of
the dither, the chatter may be considered to be the dither. This simple
relationship makes it very easy to calculate the positions of the closed-
loop poles on the loci for small inputs on the basis of the following
arguments:

1. The gain of the system (equivalent limiter gain times aerodynamic
gain) for the dither signal must be the value of open-loop gain associated
with the crossover point (we of sketch (d)). This relationship is true
since the open-loop gain must be high enough to sustain the limit cycle
(or chatter) at we.

2. Since the value of the gain for the low-frequency component of
the input to the limiter is Jjust half the value for the chatter, the
equivalent linear system 1s found by moving back along the loci to the
point corresponding to an open-loop gain of one-half that at We.’
Flectronic simulation verifies that this simple process works exception-
ally well as will be shown in the missile example section of this report.

“This analysis suggests that a system which measures the damping
(ref. 1, p. 81) or frequency (ref. 1, p. 201) of the high-frequency mode
and adjusts the open-loop gain so that the poles are in the left half
plane, may be made to be less sensitive to parameter variations if it
adjusts the open-loop gain to be more than one-half the crossover gain.
It is doubtful, however, that the added insensitivity is worth the more
complex hardware.



10

From this analysis one can say that if the gain associated with we
is very high (this will be true if w, is very high as is shown by con-
ventional root-locus techniques, e.g., ref. 5), then all the closed-loop
poles will be far away from the origin, except the two which have moved
near the instrument zeros.

-

Thus, the resulting closed-loop transfer function is approximated by

— 1
T (82/wg?) + (28 wg)s + 1 (3)

ol (@

Other investigators (ref. 3) have shown that in the chatter mode
an on-off control system behaves like the system derived by setting the
switching quantity equal to zero. For this example (neglecting instru-
ment poles) an approximate switching quantity, m(t) of sketch (c), is

O O

m(t) = r(t)-c(t) - ;% 8(t) - =2 &(t) (4)

Setting m(t) equal to zero and using Laplace transform techniques one

can derive equation (3) from equation (4). Thus, the root-locus argu-

ments given here provide another analytical reason for the experimental
results of reference 3.

The root-locus technique shown here is applicable for determining
chatter frequencies and a qualitative idea of effects of input magnitude.
Drawing root-locus diagrams for a large number of examples to determine
preliminary designs, however, is quite a lengthy process. For this
reason, a method for quickly determining the approximate chatter fre-
quency and amplitude has been derived. This method along with two schemes
for controlling the chatter amplitude, should it be excessive at certain
flight conditions, is presented next.

Prediction of Chatter Frequency

In a practical autopilot of the high-gain saturating type, the
chatter frequency must generally be much larger than the aircraft natural
frequency or the natural frequency of the instrument feedback zeros.
This condition must be met in order that the chatter at the output be
reduced to a tolerable level. As a result of this condition, certain .
simplifications can be made such that the chatter frequency can be
approximately calculated.
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Consider the open-loop pole-zero plot shown in sketch (e):

X (wy, &) We
X(wz,82)

jw

Aircraft (wg Gq)

Zero (w,, &)

Integration

>K'p

Sketch (e)

In this sketch, (wy,¢;), (w2,¢,), and (P;) (and perhaps other poles not
shown) represent the poles of instruments, servos, or networks of

sketch (¢). Their number and location depend upon the particular system
under investigation.

As can be seen by the vectors drawn from the aircraft poles and the
zeros to we, the phase contributions at w. of the aircraft poles and
the instrument zeros are nearly equal, but of opposite sign. Thus, for
purposes of computing an approximate w,, they may be assumed to cancel
each other. ©Since the phase shift at w. must be 1800, one can add up
the phase angles of the other poles at we to find the desired relation-
ship between their location and the chatter frequency, we. The process
is simplified in this case since the integrator pole contributes 900
phase shift at all real frequencies. Thus, the sum of the phase shifts
of the other poles (wi,{,; ws,ly; Pi1, etc.) must be 90°.
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To illustrate the method of computing w. as a function of the pole
locations, consider the example in sketch (f). Here only two complex
poles in addition to the aircraft and integrator poles are considered.
This is therefore a fifth-order system.

jw

Sketch (f)

From sketch (f) the following relationships are derived:

Wa - wr/l— 1;12

tan ¢, = Clwl (5)
1- 2
tan g, = 2T o (6)

The trigonometric identity

tan @, +tan ¢, 7)
1- tan ¢ tan ¢,

tan(@, + Q5) =

is used to sum equations (5) and (6), giving

2¢ ,w,w
tan(p, +0p) = —a—— (8)
Wy - We

O OoOwWwh
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Since tan 90° = o, and ¢, +9Po must equal 900, the denominator of
equation (8) is set equal to zero, giving

We = Wy (9)
Equation (9) is the desired expression for this fifth-order example. For

two real poles, s = -P;, s = -P>, it is easy to show that equation (9)
holds if the following definitions are made:

w,® = PPy

(10)

2f,w, = P;+ Py

For higher order systems the same method may be used to obtain the equa-
tions relating we and the locations of the poles. Table I gives these
relationships for fourth-, fifth-, sixth-, and seventh-order systems.
Note that for fourth order or lower, the chatter frequency does not exist
since one can have infinite gain in these cases as can be readily shown
by root-locus techniques.

In the solution for the seventh-~order case, given in table I, a
quadratic equation in we® occurs. The frequency for 90O phase shift
(we) is the lowest frequency of the two solutions of the quadratic equa-
tion. The higher frequency solution will be for 270° phase shift. If
realistic values of (., and {, are plgced in the solution given, we

will be about 0.6,/w;ws. The quantity, \fwiwz, is the geometric mean of
the two frequencies. Consideration of higher-order cases than seventh
shows that if the order is odd, the chatter frequency will be proportional
to the geometric mean of the natural frequencies w,, wp, etc., of

sketch (e) and must always be lower than the lowest frequency present.

The accuracy of the equations for chatter frequency given in table I
depends on how nearly the phase lead of the instrument zeros and the phase
lag of the aircraft poles cancel. With reference to sketch (e), it can
be seen that if the aircraft poles are between the imaginary axis and the
vectors drawn from the zeros to wg, then the poles contribute more phase
lag than the lead contribution of the zeros. As a result, the actual
chatter frequency will generally be somewhat lower than the predicted
chatter frequency. If the opposite i1s true, the actual frequency is
higher than the predicted frequency. This knowledge may serve to indi-
cate when more accurate methods of computation are required.

Prediction of Chatter Amplitude

Once the chatter frequency is obtained the chatter amplitude can be
readily calculated. For this calculation the output of the high-gain
limiter is assumed to be a constant-amplitude square wave and only the
fundamental component is used. The equation for chatter amplitude C,
(with reference to sketch (c)) is:



1h

co = (z3) [[452 =

The quantity, (4/w)B, is the fundamental component of the limiter output.
One may use linear methods, such as those used to derive equation (11),
to derive equations for the chatter amplitude at any point in the loop.
Equation (11) is very accurate since all the harmonic content of the
square wave 1s well filtered by the integrator, servo, and aircraft.

Control of Chatter Amplitude

If the chatter amplitude is excessive for certain flight conditions
and practical considerations make it impossible to increase the chatter
frequency, then other means may be used to reduce the chatter. Two
methods of accomplishing this objective are shown here. Both of these
methods are mentioned in reference 7.

With reference to equation (11) it is seen that the chatter amplitude
is directly proportional to B, the limit level. This suggests that one
way of reducing chatter amplitude C, is to reduce B if C, exceeds a
certain threshold level. A block diagram of a system for making this
adjustment is shown in sketch (g).

Threshold level < -
| Rectifier M Bo:iclitgsss
Motor
fi
= ° c(t)
- -B
H(s)
Sketch (g)

The output, c(t), is fed through a band-pass filter in order to
separate the chatter from other output signals. The chatter is, in
turn, rectified and compared to the threshold level. The motor turns
to reduce the 1limit level (acting as an integrator) until the actual
chatter is equal to the threshold value. Stops on the motor prevent B
from ever exceeding some given maximum value should the error signal be
positive. Certain precautions must be taken in the design of such a
system to insure adequate stability of the compensating loop. The missile

O oW =
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example section of this report shows one satisfactory design which uses
this approach. The success of the method depends on the fact that
generally G(s) varies slowly, and therefore the compensating loop may
be relatively sluggish. An obvious disadvantage is that considerable
extra equipment 1s required.

A second method for controlling the chatter amplitude is based on
the fact that the chatter amplitude at the output of the limiter is a
constant. Since the chatter frequency is unaffected by networks which
cancel each other (on a linear basis), one can place a lag network after
the limiter and a lead network preceding the limiter. The lag network
is adjusted to attenuate the chatter amplitude by the desired amount.
Sketch (h) illustrates a block diagram of this approach.

Lead Lag
r(t) + +1 B c(t)
A Tp St Gls)
A To s+l _ T s+l
H(s)
Sketch (h)

The advantage of this method is its simplicity. One disadvantage
is that any high-frequency content of r(t) (e.g., noise) is amplified
by the lead network. This high frequency has the same effect on the
limiter as chatter; that is, it tends to reduce the equivalent gain of
the limiter. Thus, apparently negligible noise on the input can be
amplified by the lead network to such an extent that it reduces the
equivalent gain of the system to the point where satisfactory performance
cannot be obtained. As a matter of fact, noise on the input to any high-
gain saturating system could render it useless for an adaptive system.
This fact suggests that other techniques may have to be used in certain
instances.

Effects of Zero Positions on the Response
to Large Inputs

The report thus far has been concerned with the system behavior for
small or slowly varying inputs. For these inputs the system is in the
chatter region continuously and the system transfer function is nearly
invariant with changes in the basic aircraft dynamics. For large input
transients, such as steps, however, the system response can be oscilla-
tory or unstable. The size of the step permitted in any particular
system, before overshoot due to limiting occurs, can be obtained from
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the switch time method of reference 2; however, control of the third-
order system® represented by the integrator and G(s) of equations (1)

has been studied extensively by Fliigge-Lotz and Ishikawa (ref. 4). Their
results can be used to illustrate the influence of the various aerodynamic
parameters, the choice of zero positions, and the size step permitted
before overshoot due to limiting occurs.

Sketch (i) shows one of the figures given in reference U4 replotted
in a form more useful for our purposes.

24
\\\\\\
2.0 \ ] £,=0.4 r//
sls -
N —] 15-0.2 ]
1.6
\\\ CCI =0
1.2
0.8 7 ‘4.\

So
oo
S 5
nNoD
N
J

0.4

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 36 40
Rowy
Normalized step input magnitude, ——5—
KQB

Sketch (i)

The data shown in sketch (i) were obtained by adjusting the zero
positions for each step-input magnitude for optimum step response. The
optimum response for a third-order system requires two sign reversals
of the saturated variable. It shows how the zeros should be adjusted as
a function of the step-input magnitude. One point of significance is
that the natural frequency of the zeros must be decreased as the step-
input magnitude increases. This point agrees with the intuitive argu-
ment that if one of the output derivatives of the plant (airplane—servo
combination) is limited, then the time of response of the system increases
with the magnitude of the input. A second point of interest 1s that the
damping of the zeros is relatively independent of the input magnitude
over the range of inputs considered.

8For this analysis, the poles due to instruments, servos, etc.,
which cause the system to chatter are neglected.
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It is necessary to understand that if the natural frequency of the
zeros is too high for any particular step-input magnitude, the system
will overshoot as a result of limiting. If the natural frequency is too
low, a chatter region exists. Thus, if one desires to set the zeros for
invariant autopilot response over the flight envelope and the maximum
step-input magnitude is fixed, then one must choose the desired response
at or lower than the optimum we given for the maximum RO9 at the
worst flight condition, that is, the flight condition when the aerody-
namic gain and natural frequency are lowest. Otherwise, steps at certain
flight conditions can result in oscillatory or unstable response. For
aircraft, the worst flight condition generally occurs at the lowest
dynamic pressure (the highest altitude and lowest velocity point of the
flight envelope). At higher dynamic pressures faster response is
possible, but cannot be obtained unless the zeros are shifted with
flight condition. This method has been studied for a normal-acceleration
autopilot and is considered later in this report.

Sketch (1) can be used to determine the highest frequency zero posi-
tions for the lowest dynamic pressure. For example, assume that for this
flight condition wg = 1, Kg = 0.1, Ry = 2g, £y = O, and B = 30°/sec.

The wvalue of the abscissa is then,

Rowg,
KoB

2
=== 0.
3 667

The ordinate reading is wg = 1.77 and Co = 0.86. For other autopilots
(e.g., pitch rate) data such as presented in sketch (i) are not available.
One, therefore, would resort to simulation studies in order to determine
the zero positions. If the positions are to be invariant, however, one
must always choose them for the largest step input at the worst flight
condition.

A MISSILE EXAMPLE

The purpose of working an example is to verify the theory and design
methods proposed, and to determine what limitations, if any, exist in the
use of a high-gain saturating control system as an adaptive autopilot.

As an example, a hypothetical high-speed air-to-air missile, capable of
attacking supersonic bombers from sea level to over 100,000 feet alti-
tude, has been chosen. This example was chosen to include very marked
changes in the aerodynamic characteristics over the flight envelope and
to include natural frequencies of the airframe which are higher (compared
to instrument frequencies) than for a conventional airplane. Filtering
of the chatter to an acceptable output level, therefore, may be a problem.
If success is attained here, this type system certainly should be feasible
for airplanes which have a considerably smaller flight envelope.

®This is true only for a linear feedback, H(s). Nonlinear feedbacks
can give optimum response for each magnitude of input but their use is
beyond the scope of this report.
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The autopilot to be designed will be of the normal-acceleration
type; that is, an input voltage will command a normal acceleration. Such
autopilots are in general use for many missiles and they have the distinct
advantage of providing a simple means (limiting the input voltage) for
limiting structural load (or g). Analog computer simulation will be used
to verify the design approach.

The block diagram of the system is shown in sketch (J).

High-gain Electronic

limiter integrator Servo Aircraft
Ad T / 1 6o 2 6
Instruments
H(s)
Sketeh ()

This block diagram is practically identical to sketch (c), so no
description is considered necessary.

System Description

Aerodynamics.- The simplified aircraft equations of motion are as
follows:

mVy = qs(cLam CL55) (12)

CCpea  CCpsb

. - g mg
IYQ = qSC<CmQG4+Cm66 + v + oV (13)

Conventional Laplace transform techniques can then be used to derive the
“ollowing transfer functions:

Me) _ v Kal(s/0j®) + (205 /vy)s +1] (1)
5(deg) 1845  (s2/wa2) + (26 /wa)s +1
é(deg/sec) _ 1845 Tgs+ 1 (15)

Alg) v (s2/w32) + (2¢5/w3)s+ 1
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The constant, 1845, in equation (14) is the conversion factor from feet
per second squared per radian to g per degree. The coefficients of the
transfer functions are as follows:

O Cl, = O CLg

Ko = - (CL,BCmg/2V) + (1V/qS) Cy,

o 958 “LyCmp~ CLelmy

(A)')z =

Iy CLg
o (@87 Cmy  TomgCry
& Iy qs 2my2
qS?:'2
€y = = 77— (Cm: + Cpy)
7 hsVIy - e e
1 g8 a5T%(Cpg + Cng)
Ca = Bua [m_V CLy, - Ty }

mVCpg ~ (aSe/2V)CreCre

qS(CmacLuf'cmaCLS)

6

An examination of representative values of the various aerodynamic
coefficients will show that for a tail-controlled aircraft, the follow-
ing simplifications can usually be made:

A, ¥ *a (16)
& 18L5 (s2/wg2) + (2, wa)s + 1
92288 (r5541) (17)
CppeC
Ka A E‘E o La‘ (18)
qSECmOL
2 . a
wp= ® T (19)
~ mV (20)

6 asCr,,
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Although the terms neglected in the A/® transfer function are quite
small, the numerator of the transfer function for a tail-controlled air-
craft has a positive real root, which can produce instability in the
closed-loop system. This root can always be eliminated from the over-
all characteristic equation of the system by proper use of pitch rate
and appropriate derivatives in the feedback path.

Three flight conditions were chosen: two to represent the extremes
of the flight envelope and one intermediate case. The parameter values
for these conditions are summarized in table II. This example allows
studies of an autopilot where gain, X,, variations of the aircraft are
80 to 1, natural frequency, wg, variations are of about 7 to 1, and
damping ratio, ga, variations are from 0.30 to O.

Instrumentation.- As has been shown, the instrument feedback transfer
function, H(s), must contain two zeros, and the natural frequency and
damping ratio of these zeros (for a high chatter frequency) are approxi-
mately equal to the natural frequency and damping ratio of the desired
(or model) transfer function.

In order to provide instrumentation which will give two zeros, two
approaches which are theoretically possible are as follows:

1. Use a normal accelerometer to measure the normal acceleration,
c(t), and feed its output through a second-order lead network.

2. Sum the output of a normal accelerometer through a first-order
lead network with the output of another first-order lead network fed
from a pitch-rate gyro.

For the first approach, the natural frequency and damping of the
zeros 1is set by the network and therefore does not change with flight
condition. Normal accelerometer noise may make this approach Impractical
since the network must have a gain which increases with frequency. 1In
another type autopilot (e.g., pitch attitude) where instrumentation is
available to measure the necessary derivatives of c(t), an invariant
zero position feedback transfer function is possible without the lead
network. The problems which may be encountered with this example can
therefore be expected in these other types of autopilot.

The second approach is more practical and it is usually employed
without the lead network in a conventional normal-acceleration autopilot.
In this approach the zero positions change as the flight condition changes.
The position change can be partially controlled in the design, so that at
high dynamic pressure the natural frequency of the zeros is higher than
at low dynamic pressure. Thus, the response of the system using this
approach will be faster at high dynamic pressure where faster response
is possible. The response will become slower with reduced dynamic pres-
sure where attempts to obtain a fast response may result in instability.
This system thus does not provide the usual adaptive autopilot; however,
for certain missile (and perhaps airplane) applications its features may
be more desirable than invariant response.

\O Oty
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The variation in zero positions with this second approach is most
conveniently found by assuming the networks are capable of perfect
differentiation., The sum of the two network outputs will then be given

by
Yy = ao‘e. + boé + CoA"‘ doA (21)

The use of equations (16) and (17) and Laplace transform techniques for
finding the required derivatives allows one to put equation (21) in the
following form

Y;S) = <1§[l+5 Téao>s2 + |:18Vl+5 (Tébo + ao) + co]s +<l§[l+5

The quantity (1845/V)b,+d, will be chosen as unity at some mid-velocity
so that the over-all system (sketch (j)) will have unity gain at this
velocity. The gain of this system will thus change with flight condition.
In conventional autopilots the gain change is eliminated by means of a
low-frequency differentiating circuit (often called a washout circuit in
this application) in the pitch-rate feedback path. For purposes of
simplicity dy will be adjusted so the gain is unity even though in
practice the washout circuit would be used.

bo*'d;> (22)

The natural frequency, w,, and damping ratio, QO, of the zeros can
be determined from equation (22) giving (for (1845/V)bg+dg = 1)

_ 1
vo = J(I855/V) 1geg (23)

= 1 185 (1op ) J 2k)
RN G-y ey [ v e Rl o (

Substitution of 73 (eq. (20)) in equation (23) gives

1 1
WA = =
° J(185/v) (mV/aSCry)ae N (1845/Ty) {{mCu, T/ (aSe/Ty) CnyCr,, 1} 20
(25)
which by use of equation (19) gives:
W 2 (26)

) J-1845 ag(nCy T/TyCr,,)

Since equations (19) and (20) are espproximate, equation (26) shows wg
is approximately proportional to wa.
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Equation (24) can be put in the form

b
o = % [aozo + wo<}%}5 ao4'Cé>] (27)

The damping ratio, Co! therefore changes as w, changes; however, it will
be shown later that by appropriate selection of the constants bp and co
this change (for the example missile) can be small enough to give a
reasonable system.

The dynamics of the instrumentation will be assumed to be approxi-
mated by a first-order time lag of time constant 145 = 0.0125 second.
This representation is permissible as long as the over-all system is at
least fifth order so that chatter must exist. As will be shown later,
as far as chatter frequency is concerned, this time constant provides the
same phase shift as a second-order system with a natural frequency of
22.8 cycles per second and damping ratio of one half.

Servo.- The dynamics of the servo are approximated by a first-order
lag of time constant tg = 0.025 second. As will be shown, the same
chatter frequency would exist if the servo were second order with a
natural frequency of 11.4 cps and damping ratio of one half.

The limiter will be set so that the maximum control surface velocity
is 30° per second.

Control-surface position limiting has not been considered in this
study and in some cases may necessitate alterations to the system. When
position limiting occurs the system response is simply that of the air-
craft alone, and in manned vehicles or ones where stability is a problem
it may be necessary to reserve some control-surface deflection for
stability augmentation. However, this problem has been successfully
coped with in conventional autopilots and should be no more difficult to
deal with in the system under study here.

System Design and Simulation

Specifications.- The following specifications were selected for the
resultant closed--loop normal-acceleration autopilot.

1. A step input of at least 2.5 g for the worst flight condition
(condition 1 of table II) should have a good step response; that is, it
should not be unstable or extremely coscillatory. For the other two
flight conditions it would be desirable to have good step response for
inputs as high as 20 g, the assumed structural load limit.

O O W
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2. The desired transfer function, the reciprocal of H(s) of
sketch (j) shall be either

(a) Fixed by the zero positions selected to meet specification (1)
(b) Allowed to vary in accordance with equations (26) and (27)

In either case, however, the damping ratio, QO, given by equation (27)
shall be in the range 0.4 < < 0.9. This variation in ¢, would be
reasonable for most normal-acceleration autopillots.

3. The chatter amplitude at any flight condition shall not exceed
0.2 g (peak to peak).

Selection of zero positions.- The data presented in sketch (i) can
be used to select the zero positions for the optimum response to a given
magnitude of step input to this system if one neglects instrument and

servo time lags. The step magnitude chosen is 2.5 g and aerodynamic data
for condition 1 of table II.

The abscissa of sketch (i) is

Rowg, _ 2.5(3.6) _
KB 0.11(30)

2.73

This gives the zero positions described by
We k.75
So

In order to check the validity of the assumption of neglecting the servo

time lags, the system was simulated on an analog computer and steps of

various magnitudes were applied for no instrument or servo lags and for
the lags assumed for this example. The responses are shown in sketch (k).

J/‘ 2\ / /
\\

i

0.72

D
D

AN N

Normal occeleration,
A,
o

N
L/
J/AL/'
0 ] 2 3 0 | 2 3 4q
Time, sec Time, sec
(I) No time lags (2) With time lags

Sketch (k)
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Without time lags an optimum (no overshoot) response is obtained for a
2.5 g step. The introduction of time lags for this system, however,
causes the response to become unstable for a h g input and to be com-
pletely unacceptable for 2.5 g. This result illustrates the fact that
time lags of the magnitudes given certainly are not to be neglected in
selecting the zero positions. The reasons for the oscillatory and
unstable performance are best explained by drawing the root locus as a
function of equivalent limiter gain.

This is shown in sketch (1). As can be seen from sketch (1) the
locus from the aircraft pole is in the right half plane for low values of

limiter gain. Thus, large inputs (or noise signals) can shock the system
into an unstable mode (see ref. 2). This fact suggests a better way of

76

jw

40

20

-100 -80 -60 -40
Sketch (1)

choosing zero positions in order to prevent any instabilities in the
system due to inputs. The method is to choose the maximum wg for the
desired value of damping, such that the angle of departure from the
complex pole (for this example) is greater than 90°. There is a certain
amount of arbitrariness to this choice, however; the values chosen for
this example are

2.89

Wo

Co

Il

(28)

0.679
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The step responses and root loci for these zero positions are given in
sketch (m). As can be seen from the root loci, no instability can result
in this system for low values of equivalent limiter gain. The step

1100

q -
o 4175
< .
s ¢ o
§ / 50
<2
S
3 125
o [
£ /

0 | 2 3 100 75 50 X 25 0

Time, sec 4
Sketch (m)

responses are well damped for step inputs as high as 4 g and are somewhat
slower than the optimum given by sketch (k). The zeros given by equa-
tions (28) will therefore be used in the fixed zero example to be studied
here.

For the case with moving zeros, the values of ag, by, and co of
equations (23) and (2L4) are chosen so that equations (28) are satisfied
for the worst flight condition.

Equation (23) gives
ag = 0.0181 (29)
Equation (27) shows that Co cannot be chosen as a constant, that is,
it must vary with wg and V. Since both by and ¢y can be selected,

some control of the variation is possible. The numbers selected here
are

by = 0.0618

(30)

]

co = 0.0502

The variation of ¢, with wy for V = 3340 and V = 4402 is shown in
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sketch (n). Although the damping ratio of the desired response is less
than one-half for certain flight conditions, this system will be considered
as satisfactory.

.8

Condition | V= 3340 2>
% T 2/Condifion 3

© \\ /K Vim= 4zi;oz
2

A
~ . =
- \\fﬁdifion
4
2
0 4q 8 12 16 20 24

wy, radians/sec
Sketch (n)

Chatter amplitude prediction and control.- The approximate chatter
frequency can be determined from table I. This frequency is invariant
with flight condition and is equal to

we = W%;'%% = 56.6 radians/sec (31)
s Ti

The formula of table I for the seventh-order case shows that we would
be the same if we had assumed second-order characteristics for the servo
and instruments and had (g = {; = 0.5, f; = 22.8 cps, fg = 11.k cps.
These numbers for natural frequency are reasonable, but somewhat con-
servative in terms of currently available instruments and high performance
hydraulic servos.

To illustrate the accuracy of the approximation for this example,
the chatter frequency was determined by the root-locus method and by
simulation. In this particular case, the chatter frequency given by
equation (31) is not high compared to the aircraft natural frequency or
natural frequency of the zeros for all cases; thus, the accuracy of the
prediction is questionable. The results are given in table III and are
reasonably good. The disagreement between the results of the simulation

O OWw e
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and root-locus method can be attributed to both simulation inaccuracy
and unaccounted-for time lags of the analog computing elements. The
inaccuracies, however, definitely suggest that the actual chatter fre-
quency in any particular system can only be determined by mockups
including hardware.

Once the chatter frequency is known, the chatter amplitude can be
determined by equation (11). The chatter amplitude obtained by use of
the formula and root-loci computed chatter frequencies as well as the
measured chatter amplitude are given in table IV. The chatter amplitude
based on chatter frequency computed by formula and by the root locus are
not in good agreement. The latter amplitude, however, is reasonably close
to the measured value and the difference is attributed to the differences
in chatter frequency.

The data of table IV show that the peak-to-peak value of g exceeds
the specifications (0.2 peak to peak) for conditions 3 and 5. This
indicates that either faster instruments and servos must be used (to
increase chatter frequency thereby reducing the amplitude) or that some
means of controlling chatter amplitude must be employed. The latter
method is investigated here using the schemes of sketches (g) and (h).

If the method represented by sketch (g) is used, then one must design
the compensating loop for adequate performance. This loop is shown in
sketch (o):

Threshold level Rectifier Filter

C; _ Cc
¥ v 1 \/_ N(s)

Motor

E Limit level control
—B/‘ G(s) c(t)
| S
-B

Sketch (o)

It will be assumed that G(s) changes rather slowly so that a time
constant of approximately 1 second for this compensating loop is suf-
ficiently fast. The problem is to determine X, and N(s) of sketch (o)
for the desired performance.
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Equation (11) shows that Ce = [(4/)B]|G(Jwe)/Jwe|. Thus, if one
assumes that |N(jwe)| = 1 and that any dynamics associated with the
transfer function relationship CCav/B are negligible, then the constant
relationship between Cc,, and B 1is

Cegv 2 b | G(Jwe)
3 % T 'j;;;“ (32)

The 2/x factor of equation (32) is used to obtain the average value of
the assumed sine wave.

The time constant, T,, of the loop is equal to the reciprocal of
the gain around the loop or

Juwe
G(Jwe)

1

T2
K1

5 (33)

Te =

Since ijc/G(jwc)I varies with flight condition, K; must be made to
vary with flight condition if 1, 1s to remain constant. It is probable
that in many cases K; could be selected at some constant value and the
change in T, Wwould not be objectionable. There is, however, a simple
means of compensation if this is not the case. This is shown as follows:
Assume that the loop is functioning correctly and the motor is not on its
stops. Then

8

G(jwc)
'1:5 r

JWe

Ci = Ccav -

B (3L)

or
B =X Ci
8 [G(Jwe)/Juwe ] (35)

where Ci 1s a constant. Thus, the limit level, or shaft pcsition of
the motor, can be used to obtain a gain which decreases as |G(Jjwe)/Jwe]
increases. The constant, K;, of sketch (o) can be replaced by a variable
by using a potentiometer with a variable gain, Kg, on the motor shaft.
Since Kg must be less than unity, the motor will be assumed to have a
gain, Ky, which can have any selected value.

For design purposes assume B = 30O per second when Kg = 1.0, or
Ks = B/30. From equation (35) is obtained

Ko = X2 Ci (36)
i 8 [16(Jwe)/dwel130

Since KgKy = Kj, the time constant of the loop is (from eq. (33))

VoW
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(37)

For 1o = 1 and C = (2/x)(0.1)g

Kn = 300<§> = 472 (38)

The network transfer function N(s) must be selected next. This
network must have the characteristics of a band pass filter with zero
gain for frequencies less than w, since it is undesirable to pass any
signals resulting from inputs to the closed-loop system. The filter
should, in general, cut off above w, 1in order to eliminate noise of
the type resulting from measurements and should have reasonable damping
for transient performance due to disturbances such as gusts. These
requirements generally imply that the use of a filter of the form

N(s) = K (39)

[s8/(we)*10(82/wy2) +1][ (82/w22) + l]}
[(32/wf2)-+(2C/wf)s4-l]n+4+x

could result in reasonable performance. The quantities X and wp in
equation (39) are determined by the high-frequency cutoff characteristics
desired; n and w, are determined for the low-frequency characteristics
desired. The design of an optimum filter for this application is beyond
the scope of this investigation. The filter which was used to demonstrate
the principle of this type system is given by

) 8% Jwpt
[(s2/ws2) + (s/wg) +11°

It should be emphasized that n of equation (39) should be as high as
permissible (from practical construction standpoints) in order to prevent
signals due to input responses from affecting the compensating loop. The
value n = 4 was found to be satisfactory for this example, and it was

also found that there was no need to attenuate frequencies higher than

we Since the computer introduced little noise. In general, it is believed
however, that the success of such systems which detect and adjust them~
selves by means of a test signal (chatter in this case) depends greatly

on the use of a relatively complex network.

(ko)
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The frequency response of the network used is shown in sketch (p).
This sketch and thc dala of table III show that wp should be chosen
at about 40 radians per second in order that the time constant T and

1.6
" // \\
2 8
> /
/
4 //
0] 4 .8 .2 1.6 2.0
Sketch (p)

chatter amplitude C, ©be within 10 percent of the design values. Tor
the chatter frequency variation calculated (table III) the network gain
shown in sketch (p) is about 1.26. This value is accounted for in the
system.

The design of the system of sketch (h) for controlling chatter
amplitude is simply a matter of choosing the constants 7, and 75,. In
practice, high-order networks may be necessary; however, only first-
order networks will be considered here.

The chatter amplitudes for cases 3 and 5 of table IV are seen to
exceed the specified values. For the example, only the fixed zero case
will be considered so that only filtering for case 3 need be determined.

A desired attenuation of 1/8 is indicated by the data in table IV obtained
from the approximate we. Since the approximation formula provides a
conservative estimate of we, the use of the data from this formula pro-
vides a margin of safety of about 2 to 1. As can be seen from table IV,

a factor of l/h would satisfy case 3; however, other points of the flight
envelope could have a higher chatter amplitude.

O O W
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If it is assumed that 1, = 0.1 T, then the reduction of the
network at we. 1is
. 2we2 + 1
1 _ 0 Olnggwc + (hl)
8 T1 We +1
Assuming w, = 56.6, one solves equation (41) obtaining
Ty = 0.234 (k2)
and since 1T, = 0.1 T,
75 = 0.023L (43)

Different values than those given in equations (42) and (43) can be

cbtained by different ratios of 72/71; however, this ratioc must be

smaller than the chatter amplitude reduction desired. The method of
selection also gives the smallest value of T3; permissible for the

To/T, ratio assumed. This result is considered desirable from the

standpoint of having the least effect on the response for large step
inputs.

Eguivalent linear system for small inputs.- Analysis has shown that
the high-gain saturated control system behaves in a linear fashion for
inputs which are small enough to have little effect on the inherent limit
cycle. 1In particular it has been shown that the equivalent gain of the
limiter for signal inputs is just half what it is for the chatter, There-
fore, a root-locus graph of the system as a function of equivalent limiter
gain allows one to pick off the pole positions of the equivalent linear
system. The graphs for the five cases are shown in figure 1. The heavy
dots on the loci indicate the positions for the gain being just half the
gain where the aircraft poles cross into the right half plane. These
heavy dot positions can therefore be read off and an equivalent linear
system transfer function derived.

For case 1 the dominant poles (those closest to the origin) are very
close to the feedback zeros and the other poles are quite a large distance
away. This simply implies that the transfer function is closely approxi-
mated by a second-order transfer function whose denominator is the feedback
zeros. For the other cases this is not true. The heavy dots for cases 2
and 3 are on the real axis. Furthermore, for cases 2 and 3 the system is
really dominant first order. Thus, with the instrument and servo dynamics
asgsumed it is impossible to have a high enough gain of the system to
obtain an equivalent linear system whose approximate transfer function is
the reciprocal of the instrument feedback zeros. The only way this could
be accomplished is by use of higher performance equipment. The approxi-
mate transfer functions indicated by the heavy dots, however, are not bad
in the sense of being oscillatory. Instead, the system response is more
sluggish than desired and may or may not be undesirable in the particular
over-all task (e.g., homing or beam riding).
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Response for large inputs.- As has been shown here and previously
(ref. 2), the root-locus graph can be used to obtain a qualitative picture
of performance for inputs large enough to reduce the equivalent limiter
gain. As a result of the choice of zeros for case 1, it is seen from
the loci for all cases that no locus crosses into the right half plane as
the equivalent gain is reduced to zero. Thus, as the input is increased,
no kind of instability will result. As a matter of fact, the response
will become dominant first order for all cases for very large inputs
because of the pole at the origin. The step response for all examples
will therefore be characterized by very little or no overshoot.

Simulation of the design.- The system response to steps has been
checked by means of simulation. Prior to presenting the data it is
desirable to review the proposed designs. Three examples have been
worked out. These are:

1. Fixed zeros and a network used for chatter amplitude control.

2. Fixed zeros and a limit level controller used for chatter
amplitude control.

3. Moving zeros and a limit level controller used for chatter
amplitude control.

The block diagrams for the three examples showing all the constants
are given in figure 2. The transfer function coefficients of the missile
for the three flight conditions studied are given in table II.

The step responses for example 1 for the three flight conditions

are shown in sketch (q). The dotted line shown (for condition 1) indi-
cates the response without the networks and shows that the networks have
the effect of slowing down the response for step inputs. This is true
for all flight conditions wherein a large amount of limiting takes place
during the transient. The control surface position is shown for flight
condition 1 (for the largest input) and illustrates the chatter present
without the networks and the filtering of chatter produced by the network.

For conditions 2 and 3, the response is seen to be quite sluggish;
however, no type of instability is present for inputs as high as 20 g,
a result which agrees with the theory presented earlier. The response
of the equivalent linear system (obtained from the heavy dots of fig. 1)
is shown for conditions 2 and 3 which i1llustrates that even for these
large transients, the system response agrees reasonably well with the
equivalent linear system. -

The step responses for example 2 are given in sketch (r). The limit-
level controller has no effect on the transient performance of this
example; that is, its only effect was to reduce the chatter amplitude for
flight condition 3.
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To illustrate the time response of the limit-level controller,
50-percent step changes in K, were run and the limit level recorded.
These data are presented in sketch (s). The response corresponds closely
to the design value of 1 second time constant. These data were run for
example 2, condition 3.

8

M

/ \-50% decrease
in Kg

N

A\

/|
(
e

Limit level, steady staote 5,deg/sec
H

MM—-
50% increase
in Kq
2
o] ! 2 3 4 5
Time, sec
Sketch (s)

The step responses for example 3 are presented in sketch (t). Only
flight conditions 2 and 3 are presented since for condition 1 the response
is identical to that in sketch (r). The limit-level controller has no
effect on the step response for condition 2 since the chatter amplitude
is small, but it does have a significant effect on the step response for
condition 3. As a result of the high chatter amplitude (without control)
for this example (see table IV), the maximum rate of control-surface
deflection, that is, the limit level, must be reduced from 30° per second
to approximately l.h}o per second in order to reduce the chatter amplitude
to the specified level. This large reduction in limit level results in
a response which is saturated during most of the transient for large
inputs. It is interesting to note that as a result of this excessive
limiting the response is slower for condition 3 than for condition 2.
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The step response for 7.5 g input for the linear system obtained
from figure 1 is shown dotted for comparison. The comparison for condi-
tion 2 is quite good; however, for condition 3, only for inputs less than
about 2 g does the system behave in a linear fashion. The response for
this example is certainly faster than for example 2 for all but condi-
tion 1; and therefore using moving zeros is a reasonable way of obtaining
faster response when the aircraft is capable of providing this increase.

Discussion of results.- For the missile and hardware chosen in these
examples it is not possible to have the gain of the system high enough to
provide a response which is the reciprocal of the feedback zeros. The
reason for this is simply that the chatter frequency is too low for all
but condition 1. If one had higher performance hardware, which gives
higher chatter frequencies, not only would the response have corresponded
closely to the zeros but use of chatter amplitude control would not have
been necessary.

For the large variation in parameters chosen, the change in response
is not tremendous and it is probable that for many applications this
magnitude of change would be permissible.

Of the two types of chatter amplitude control, the scheme using net-
work is the most desirable from the simplicity standpoint. It does have
the disadvantage, however, of slowing down the response during transients
where a large amount of saturation is present. The design of the limit
level controller appears to be straightforward. The only item that
appears to be critical is the order of the network used to separate the
chatter from the signals required for the aircraft to follow input
commands. The limit-level controller has the disadvantage of being more
complicated and the limit level may be driven down (to reduce chatter)
to points where the response for large inputs becomes slow as a result
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of saturation. This fact suggests that perhaps additional inputs to the
limit-level controller (e.g., magnitude of the error) might be used to
make the response faster for large inputs or large errors. It was beyond
the scope of this investigation to consider the additional refinements
which lead to nonlinear controllers.

Other Considerations

The particular airframe chosen for example purposes had a very high
natural frequency for condition 3 which resulted in a high amplitude
chatter. It is very probable that a reduction in static margin would
have simplified the design problems. Shifts in static margin, however,

may cause the airframe to be statically unstable under certain conditions.

This imposes the question of whether a high-gain saturating control
system can control an unstable airframe and what pitfalls, if any, exist

with such a system. This section is devoted to consideration of this
subject.

Assume the aircraft controlled in the block diagram of sketch (J) is
statically unstable. The root locus of such a system as a function of
equivalent limiter gain could be as shown in sketch (u).

jw

*

g
——¥ % ¥ ~
Y

Q

Sketch (u)

Assume that the heavy dots on the loci represent the pole locations
for the equivalent linear system. It is quite evident that the equivalent
gain of the limiter must never be allowed to fall below the value corre-
sponding to point A (approximately) on the loci, otherwise an unstable

O OWw
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response will occur. This means that the system may be unstable for
certain inputs. If these inputs are within the range of interest, then
some means must be introduced to prevent the instability. This generally
implies the use of nonlinear controllers, and if first reversal time data
for this type plant were available, the switch time method of reference 2
could be used. Since these data are not available, use will be made ol
the root-locus method of considering the zeros to shift as a function of
error in order to show what type of nonlinear function would prevent the
instability. Consider the system of sketch (v). If K; is unity for

Unstoble
r(t) + +
an Ll g U]

aerodynamics

c(t)

ni—

Sketch (v)

small errors, the root locus will be as shown in sketch (u). Suppose
K; is actually a limiter which has unity gain for small inputs and
saturates for some input level. If the output of the box is saturated,
the root loci of loop 1 for this condition can be considered as shown
in sketch (w).

jw

- \ —
Sketch (w)

This loop may have the equivalent linear system indicated by the
heavy dots on the loci. I[ thc limiter (in place of Ki) is set suf-
ficiently low, then the equivalent limiter gain can never be driven low
encugh by inputs (error in this case) to cause system instability. Thus,
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the introduction of a simple limiter can prevent system instability due

to inpuls. Gusts, of course, could still cause system instability and

the only preventative for this is to be sure the control-surface rate -
limit, B, is high enough to prevent instability for any gust inputs the

system is likely to encounter.

The nonlinearity introduced in place of K; 1s not the optimum,
however; the form (i.e., saturation type) is suggested, and analog computer
simulation could be used to find the shape which is best for the particular
airframe under consideration.

CONCLUSIONS

A theoretical investigation of the use of a high-gain saturating
control system for an adaptive autopilot has been made. From the results
of this investigation, the following conclusions may be drawn:

O O W =

1. A high-frequency chatter must exist in such a system, and if it
can be made to have a very small amplitude, the autopilot can successfully
control the aircraft over very large ranges of flight conditions.

2. Reduction of the chatter amplitude to a tolerable value depends
on having the natural frequencies of the hardware components as high as
possible compared to that of the aircraft. Methods may be devised to
reduce the chatter amplitude below its natural value, but they will not
alleviate the harmful effects of chatter on the low-frequency character
of the response.

3. The speed of response at low dynamic pressures will be restricted
because of limiting in combination with low aerodynamic gain, and attempts
to force faster response will result in poor stability.

4, TIf the fastest response obtainable at low dynamic pressure is not
satisfactory over the entire flight envelope, it may be necessary to shift
the zeros with chatter amplitude, error magnitude, or both. In addition,
it may be desired to change the limit level with chatter amplitude. The
use of devices to accomplish these changes results in the possibility of
unstable gain adjustment loops, but a combination of high gain and self-
adjustment should result in a more versatile system.

5. There is a need for further study of systems which adjust zero
positions and limit level in combination with the high-gain saturating -
system. 1In particular, it would be desirable to determine what nonlinear
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compensation schemes, such as used in NASA TN D-20, might be added to
improve the system characteristics. In addition, further studies which
show what type nonlinear system is required for controlling unstable
airframes would be very desirable.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 19, 1959
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APPENDIX A

DERIVATION OF LIMITER GAIN IN THE

PRESENCE OF DITHER

Consider an infinite gain limiter or relay whose input is a constant,
X, plus a dither signal, D sin{wt-¢),

input = X+ D sin(wt- o) (A1)

In order to determine the intervals during which the input is positive
or negative, consider sketch (x).

/fl\ t2

X — — —_——— - _——m e
o k —!
® \/

Sketch (x)

Since the time origin is chosen so that

X+D——

input

the input is zero for t = 0, equation (Al) can be solved to give

¢ = sin”* % (42)
D
and from symmetry
T 29
by ==+ — (A3)
also
2 2
t2=%—tl—g—-££ (A)-I')

O O >
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the output is a rectangular wave as shown in sketch (y). The steady

+B

—— f2—>-|

Sketch (y)

component of this output is the average value, Y, of the rectangular
wave which from geometrical relations is

B(ti-~ tp) - Bto

Y = T (45)

2p BB
r-5(3)- %o (46)

Substituting for ¢ from (A2) gives

or

2 A
Y = EIB(? + £%>81n . % - g (AT)

Notice that the average output given by equation (A7) consists of two
parts: the first is proportional (for small values of X/D) to the input,
X; the second is a constant or bias term which is a result of the unbalance
of the limiter. This latter term shows that the successful use of such
high-gain saturating systems depends to a large extent on having a well-
balanced high-gain limiting device if zero steady state errors are to be
attained. This effect of bias was also derived in reference 3 by a
different means.

The low-frequency gain, Y/X, is given by (assuming B8 = 0)
. 2B .. -1 X
ain = == sin" 1t & A8
g — sin* 2 (A8)

The expression can be normalized with respect to limit level by letting
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=X

Y =3
(A9)

D

d ==

B

which results in
gain = 2 gin 1 Y (A10)
Ty d

The gain as a function of the normalized input, y, is shown in sketch (z)
for d = 0.1 and 4 = 1.0. The upper bound (dotted curve) is simply 1/y,
the output (limit level) divided by the input X. As is illustrated in

12
R
o/ \
£ \
o \
\
4
\\ |
\\/-7
\\
d=1.0 B et S R S
] _
0 4 8 1.2 1.6 2.0

Normalized input, y

Sketch (z)

this sketch, the gain is approximately constant for small values of y/d.

The value of the constant gain is seen also to be dependent upon the
normalized dither level, 4.

The gain of the limiter for a sine wave input only (the dither) is,
by describing-function analysis, the fundamental component of the output
divided by the input amplitude. This gain is given by

O O W >
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gain = % (A11)

[wifes

Comparison of equation (AB) with equation (All) shows that for small
values of X/D, the gain for the dither is twice the gain for the constant
input. This derivation shows why one may find the equivalent linear
system by the simple means presented earlier in this report.
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TABLE I.- FORMULAS FOR ESTIMATING CHATTER FREQUENCY

System order Approximate chatter frequency
L ©
> W1
P
6 0y ,_;
Pl +2 C Wy
1/2
wiwa(b -~ Nb2 - k)
7 2
wy Wp
where b = o te t Le s

TABLE II.- MISSILE TRANSFER FUNCTION COEFFICIENTS

Flight condition v Kg, wg, ga TS
3340 0.11 3.6 0 12
2 3871 1.95 15 .15 1.1
Lho2 8.8 25 .30 .31
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TABLE III.- CHATTER FREQUENCIES COMPUTED BY THREE METHODS

Case cgiéfizon Bxemple Chatter frequency computed by -
Formula | Root locus | Simulation
1 1 Fixed zeros 56.6 52.23 46.3
2 2 Fixed zeros 57.49 56.0
3 3 Fixed zeros 69.13 67.3
L 2 Moving zeros 50.97 48.5
5 3 Moving zeros ,L Ly .78 4.5

TABLE IV.- CHATTER AMPLITUDES COMPUTED BY THREE METHODS

Chatter amplitude, g, (peak to peak) based on we

computed by -

Case
Formula Root locus Simulation
1 0.000248 0.000k466 Not measurable
2 SRR .1078 0.12
3 1.578 .710 .76
4 J11kh .170 .190
5 1.578 4.08 4.2

O OWw =
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Figure 1l.- Root locus graphs for the five cases simulated.



Lead Limiter LLag Integrator Servo

Aerodynamics

)+ 0.2345+1 _JB | _|oo23as+1| |1 L5 as
7| 0.02345+I o[ |023assi| | S| |ooass+ | | 25+

2
wa

K
4 c(t)

2
—gq_s_+|
Wq

Network Norma!l accelerometer

0.1205%+0.470S +I J

0.01255 +1
A1) Network for_chatter amplitude control, fixed zeros
Full wave
ref=0.1x2  rectifier Network
Rif

! 30 Aerodynamics
| Limit level control

T

4
472 __-_‘__ \/ 0794 S
T & X (<) ——
,- : - 000062552+ 0.0255+)2

c{t)

clt)

4+ Y — Ko __
rit 1 4t 2
-] -[B S 00255+1| | %+ 2;?”3 +
l wy a
S S
Normal
accelerometer
0.1205%+0.470S +1 |
0.0125S +1
(2) Limit level controlier for chatter amplitude control
F————— e ——— — — — ——
|
Lﬂi@__| Same as (2) above
- ]
1
Pitch
accelerometer
=-0.0181 1
+T7+
Rate gyro
|
001255 +i ~0.06(8 i
Normal
accelerometer
+
@. 0.0502S+I |
+ 0.01255+I

(3) Limit level controller for chatter amplitude control, moving zeros

Figure 2.- Block diagrams of the three example systems.
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